Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 59(30): 2788-2795, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32657577

RESUMO

Human neutrophil elastase (hNE) is a serine protease that plays a major role in defending the bacterial infection. However, elevated expression of hNE is reported in lung and breast cancer, among others. Moreover, hNE is a target for the treatment of cardiopulmonary diseases. Ecotin (ET) is a serine protease inhibitor present in many Gram-negative bacteria, and it plays a physiological role in inhibiting host proteases, including hNE. Despite this known interaction, the structure of the hNE-ET complex has not been reported, and the mechanism of ecotin inhibition is not available. We determined the structure of the hNE-ET complex by molecular replacement method. The structure of the hNE-ET complex revealed the presence of six interface regions comprising 50s, 60s, and 80s loops, between the ET dimer and two independent hNE monomers, which explains the high affinity of ecotin for hNE (12 pM). Notably, we observed a secondary binding site of hNE located 24 Å from the primary binding site. Comparison of the closely related trypsin-ecotin complex with our hNE-ET complex shows movement of the backbone atoms of the 80s and 50s loops by 4.6 Å, suggesting the flexibility of these loops in inhibiting a range of proteases. Through a detailed structural analysis, we demonstrate the flexibility of the hNE subsites to dock various side chains concomitant with inhibition, indicating the broad specificity of hNE against various inhibitors. These findings will aid in the design of chimeric inhibitors that target both sites of hNE and in the development of therapeutics for controlling hNE-mediated pathogenesis.


Assuntos
Domínio Catalítico , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/farmacologia , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/química , Proteínas Periplásmicas/química , Proteínas Periplásmicas/farmacologia , Sítios de Ligação , Humanos , Modelos Moleculares , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
2.
Microb Pathog ; 131: 181-185, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30978430

RESUMO

Pseudomonas aeruginosa is a notorious pathogen with increasing multi-drug resistance. This situation makes it urgent to develop a prophylactic vaccine against this pathogen. Different virulence factors play a crucial role in P. aeruginosa infection. This study focused on evaluation of the iron acquisition protein HitA as a potential vaccine candidate against P. aeruginosa in a murine infection model. The recombinant ferric iron-binding periplasmic protein HitA was overexpressed in Escherichia coli and was purified using metal affinity chromatography. The purified antigen was administered to mice in combination with Bacillus Calmette-Guérin (BCG) as an adjuvant using different vaccination regimens. Serum samples were tested for IgG1, IgG2a and total IgG antibody responses which were extremely significant. Following challenge of mice with P. aeruginosa, there was a significant reduction in bacterial load in lungs of immunized mice compared to negative control mice. Opsonophagocytic assay supported the previous results. In addition, histopathological examination of livers of challenged mice showed a significant improvement difference between immunized mice and negative control mice in various histopathological parameters. Up to our knowledge, this is the first report that investigates HitA as a potential vaccine antigen. Overall, the results of this study demonstrate the protective effect of HitA recombinant protein and highlight its importance as a promising vaccine candidate against P. aeruginosa infection.


Assuntos
Vacinas Bacterianas/imunologia , Imunização , Ferro/química , Proteínas Periplásmicas/farmacologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/imunologia , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos/sangue , Carga Bacteriana , Modelos Animais de Doenças , Escherichia coli/genética , Feminino , Imunoglobulina G/sangue , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Necrose , Periplasma , Proteínas Periplásmicas/genética , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/patogenicidade , Proteínas Recombinantes , Vacinação , Vacinas Sintéticas
3.
Recent Pat Biotechnol ; 12(4): 233-238, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29173191

RESUMO

BACKGROUND: Ecotins are serine protease inhibitors which are generally found in the periplasmic compartment. These inhibitors act on a wide range of serine proteases with different efficiencies. Actually, only few Ecotins were studied, and the main characterized proteins were derived from Escherichia coli. Functional studies of this latter protein allowed the development of numerous patents related to Ecotin relevant biotechnological applications. OBJECTIVE: This review aims to give an update on the relevant Ecotins already described and to provide a concise overview concerning the relevant patented applications of these serine protease inhibitors. METHOD: In this review, we focus on the analysis of Ecotin diversity and their distribution using Pfam protein data base. Moreover, we report a detailed overview regarding the biotechnological applications of the Ecotins based on all patents associated to Ecotins and their biotechnological applications searched in European Patent Office (Espacenet), United States Patent and National Patent Collections (WIPO) patents databases. RESULTS: On the basis of this analysis, we demonstrate that Ecotins are mostly present in bacteria. Study of Ecotin sequences and their biochemical properties reveals that they are a small serine protease inhibitor group. The high stability and specificity of Ecotins promote their biotechnological uses in several fields. The original structural organization of Ecotin-protease complexes and their flexibility lead to several patented applications. CONCLUSION: This review showed that Ecotins have many attractive biotechnological applications. Potential of Ecotins needs to be more investigated seeing the limited available data related to this protein family. Thus, further functional analyses will promote the use of Ecotins.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas Periplásmicas/metabolismo , Anticoagulantes/química , Anticoagulantes/metabolismo , Anticoagulantes/farmacologia , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Biotecnologia , Coagulação Sanguínea/efeitos dos fármacos , Ebolavirus/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/classificação , Proteínas de Escherichia coli/farmacologia , Patentes como Assunto , Peptídeo Hidrolases/metabolismo , Proteínas Periplásmicas/química , Proteínas Periplásmicas/classificação , Proteínas Periplásmicas/farmacologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia
4.
Int J Biol Macromol ; 78: 296-303, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25881959

RESUMO

Ecotin is an Escherichia coli-derived protein that can inhibit serine proteases. It has been suggested that this protein (ecotin-WT) and some of its variants could be used to develop a prototype to treat thrombosis. In this work, the effect of ecotin-WT and a variant of this protein harboring two mutations (Met84Arg and Met85Arg, ecotin-RR) were analyzed to determine their ability to prevent thrombus formation using in vivo models. Ecotins were analyzed in vitro using the coagulation tests. An in vivo venous thrombosis rat model and a pulmonary thromboembolism mouse model were used to investigate the antithrombotic activity. The bleeding time in rats using a tail-transection model was evaluated as a possible side effect caused by the administration of these proteins. Ecotin-RR was more effective in inhibiting thrombin than ecotin-WT. Both ecotins presented similar mechanisms of anticoagulation activity and were able to decrease thrombus formation. In contrast, only ecotin-RR increased survival rates in the in vivo pulmonary thromboembolism model, reinforcing the antithrombotic activity of ecotin-RR. Ecotin-WT and more so ecotin-RR showed potent antithrombotic effects, not associated with bleeding. The presented results indicate that ecotin-WT and ecotin-RR may be new scaffolds that could be used to develop anticoagulation molecules.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/farmacologia , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Proteínas Periplásmicas/química , Proteínas Periplásmicas/farmacologia , Animais , Anticoagulantes/química , Anticoagulantes/farmacologia , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Hemorragia/tratamento farmacológico , Humanos , Masculino , Camundongos , Ratos , Serina Proteases/metabolismo , Tromboembolia/sangue , Tromboembolia/tratamento farmacológico
5.
Biol Chem ; 391(4): 425-33, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20180651

RESUMO

Engineering of protein-protein interactions is used to enhance the affinity or specificity of proteins, such as antibodies or protease inhibitors, for their targets. However, fully diversifying all residues in a protein-protein interface is often unfeasible. Therefore, we limited our phage library for the serine protease inhibitor ecotin by restricting it to only tetranomial diversity and then targeted all 20 amino acid residues involved in protein recognition. This resulted in a high-affinity and highly specific plasma kallikrein inhibitor, ecotin-Pkal. To validate this approach we dissected the energetic contributions of each wild type (wt) or mutated surface loop to the binding of either plasma kallikrein (PKal) or membrane-type serine protease 1. The analysis demonstrated that a mutation in one loop has opposing effects depending on the sequence of surrounding loops. This finding stresses the cooperative nature of loop-loop interactions and justifies targeting multiple loops with a limited diversity. In contrast to ecotin wt, the specific loop combination of ecotin-Pkal discriminates the subtle structural differences between the active enzymes, PKal and Factor XIIa, and their respective zymogen forms. We used ecotin-Pkal to specifically inhibit contact activation of human plasma at the level mediated by plasma kallikrein.


Assuntos
Calicreína Plasmática/antagonistas & inibidores , Calicreína Plasmática/metabolismo , Inibidores de Proteases/farmacologia , Engenharia de Proteínas/métodos , Ativação Enzimática/efeitos dos fármacos , Precursores Enzimáticos/antagonistas & inibidores , Precursores Enzimáticos/metabolismo , Humanos , Mutação , Tempo de Tromboplastina Parcial , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Proteínas Periplásmicas/farmacologia , Inibidores de Proteases/metabolismo , Especificidade por Substrato
6.
Int J Biochem Cell Biol ; 38(11): 1893-900, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16843700

RESUMO

Ecotin is a Escherichia coli-derived protein that has been characterized as a potent inhibitor of serine-proteases. This protein is highly effective against several mammalian enzymes, which includes pancreatic and neutrophil-derived elastases, chymotrypsin, trypsin, factor Xa, and kallikrein. In this work we showed that ecotin binds to human alpha-thrombin via its secondary binding site, and modulates thrombin catalytic activity. Formation of wild type ecotin-alpha-thrombin complex was observed by native PAGE and remarkably, gel filtration chromatography showed an unusual 2:1 ecotin:enzyme stoichiometry. Analysis of the protease inhibitor effects on thrombin biological activities showed that (i) it decreases the inhibition of thrombin by heparin/antithrombin complex (IC50=3.2 microM); (ii) it produces a two-fold increase in the thrombin-induced fibrinogen clotting; and (iii) it inhibits thrombin-induced platelet aggregation (IC50=4.5 microM). Allosteric changes on thrombin structure were then evaluated. Complex formation with ecotin caused a three-fold increase in the rate of thrombin inhibition by BPTI, suggesting a displacement of the enzyme's 60-loop. In addition, ecotin modulated the enzyme's catalytic site, as demonstrated by changes in the fluorescence emission of fluorescein-FPRCK-alpha-thrombin (EC50=3.5 microM). Finally, solid phase competition assays demonstrated that heparin and prothrombin fragment 2 prevents thrombin interaction with ecotin. Altogether, these observations strongly support an ecotin interaction with thrombin anion-binding exosite-2, resulting in modulation of its biological activities. At this point, ecotin might be useful as a new tool for studying thrombin allosteric modulation.


Assuntos
Proteínas de Escherichia coli/farmacologia , Proteínas Periplásmicas/farmacologia , Trombina/metabolismo , Sítios de Ligação , Relação Dose-Resposta a Droga , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Humanos , Proteínas Periplásmicas/química , Proteínas Periplásmicas/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/metabolismo , Inibidores de Serina Proteinase/farmacologia , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...